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Kac Polymers�
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We show how a polymer in two dimensions with a self-repelling interaction of
Kac type exhibits a diffusive–ballistic transition if considered on the appropri-
ate scale.
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1. INTRODUCTION

In the last two decades a considerable effort has been spent to find
a mathematical description of the physical objects known as polymers.
According to ref. 1: “a polymer is a long chain of molecules with two
characteristic properties: an irregular shape and a certain stiffness”. The
natural mathematical object to describe irregular long chains is the ran-
dom walk; since the precursory work by Brydges and Spencer,(2) the
(weak) interaction added to the standard probability distribution of the
random walk to take into account the stiffness of the polymer has been
a self-repelling interaction. The simplest way to describe this model is to
consider walks ωt in Z

d starting at the origin and consisting of |ω| = N

nearest neighbor steps, and to assign to each walk a weight proportional
to
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pN(ω)= exp


−β

∑
0�s<t�N

δ(ωs −ωt)


 . (1.1)

A natural quantity to study is the mean square end-to-end distance of ω

defined as:

RN(β)=
∑

|ω|=N ω2
NpN(ω)∑

|ω|=N pN(ω)
. (1.2)

A polymer is classified by the value of the coefficient α such that

lim
N→∞

RN(β)

Nα
=D, (1.3)

with D a positive coefficient; a polymer is said to be diffusive if α = 1,
super-diffusive if 1 < α < 2 and ballistic if α = 2. The available rigorous
results and the numerical simulations show that, although D depends on
the coefficient β appearing in Eq. (1.1), the parameter α, and therefore the
long distance behavior of the polymers, are β-independent.

Due to the high non locality of the interaction appearing in Eq. (1.1),
the rigorous results about the behavior of Eq. (1.2) are quite scarce. In
ref. 2 it is proved that for d �5 the self-repelling polymers are diffusive, in
ref. 3 it is shown the ballistic behavior for the one-dimensional case. Such
results, together with a more detailed description of the behavior of the
polymer, are contained in many other works, see e.g. ref. 4 and reference
therein.

The ingenious technique that allows to prove the diffusive results is
the lace expansion, which is a way to show by induction that the proper-
ties of the correlation functions of self-repelling polymers are the same as
those of the free ones. There are many ways to implement such inductive
hypothesis, and the recent versions of the lace expansion are very elegant,
see e.g. refs. 3, 5. The same technique allows to show the ballistic behavior
in d = 1.(5) The lace expansion, however, seems to be useless in the inter-
mediate cases, i.e. for d = 2,3,4, where a super-diffusive but sub-ballistic
behavior is expected. The only result in this direction is ref. 6, where the
logarithmic corrections to the diffusion coefficient in d =4 have been stud-
ied using a field theoretic approach in a continuous space.

Another interesting class of results concerns the so called forgetful
or elastic polymers, i.e. when the self repulsion is weaker if the poly-
mers intersect after a long time.(3) The weight associated to the walk ω is
modified in the following way:
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p
f
N(ω)= exp


−β

∑
0�s<t�N

f (|t − s|)δ(ωs −ωt)


 , (1.4)

where f (x)>0 has a suitable decay for large x. Also in this case, however,
the basic technique is the lace expansion, and the available rigorous results
cover only the diffusive regime.

One may wonder why a genuine elastic interaction, i.e. a bending con-
tribution in the energy associated to the polymers, is not considered in lit-
erature. This would be a way to take into account very naturally the stiff-
ness of the polymer. A local interaction of this form, indeed, does not
affect the diffusive behavior of the free random walk.

This can be easily seen in the following way: let us describe the walk
ω in terms of its unit increments. To each ω it can be associated a set
of unit vectors σi, i = 1, . . . ,N , taking values in {±e1, . . . ,±ed}, where
e1, . . . , ed are the generators of the lattice Z

d and represent the ith step of
the walk. Clearly ωt =∑t

i=1 σi . A simple way to assign a weight to each
ω preventing the bending of the polymer would be:

pb
N(ω)=pb

N(σ)= exp

[
β

N∑
i=1

σi ·σi+1

]
, (1.5)

and the mean square end-to-end distance of ω is defined in this context
as:

RN(β)=
∑

1�i,j�N

∑
σ σi ·σj pb

N(σ)∑
σ pb

N(σ)
=

∑
1�i,j�N

〈σi ·σj 〉. (1.6)

The measure obtained in this way can be interpreted as the Gibbs measure
for a bounded spin model in one dimension with finite range interactions,
and it is well known(7,8) that these models do not exhibit phase transitions
for any temperature and their spin–spin correlations 〈σi · σj 〉 decay expo-
nentially. This implies from Eq. (1.6) simple diffusion. A bending energy
different from the simplest choice in Eq. (1.5), but with finite range, would
give always diffusive polymers.

In recent times, however, some interesting results about one-dimen-
sional spin models have been proved. In particular, for the class of inter-
actions known as Kac potentials, the existence of non-zero magnetization
domains on a scale much larger than the range of the potential has been
proved in ref. 9. This behavior suggests the possibility that a polymer with
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finite range self interaction can exhibit phase transitions as a finite size
effect.

In this work we propose a model of polymers (Kac polymers) defined
in a two-dimensional space which can be rewritten in terms of a one-
dimensional bounded spin system very similar to the one described in
ref. 9. With the same techniques used there, we are able to prove a diffu-
sive–ballistic phase transition for this class of polymers, when the infinite
volume limit is realized in a suitable sense or, which is the same, if the
polymer is seen on an appropriate scale.

The result is stated for polymers on a two-dimensional lattice space
since in this case, by a suitable change of variables, the Hamiltonian can
be disentangled as the sum of two Ising Hamiltonians with Kac interac-
tion. The generalization to higher spatial dimension does not present, in
principle, any obstacle but is technically much more involved.

Hence the above diffusive–ballistic phase transition for Kac polymers
does not depend on the spatial dimension d. This is a relevant difference
w.r.t. the self-repelling models above mentioned. This is due to the local
character of the interaction and to the fact that the model we introduce
is intrinsically one-dimensional.

To fix the ideas a possible model (that we will slightly modify in
the next section) is the following one. Let us consider a walk ω =
{ωi}i=0,1,2,... ,N , on a d = 2-dimensional lattice; we define the following
weight for the walk:

pK
N (ω)= exp


βγ 3

∑
0�i<j�N

j−i�γ −1

(ωi −ωj )
2


 , (1.7)

where β >0 and γ >0 are suitable parameters. Take, for simplicity, γ such
that γ −1 is integer.

This weight tends to prevent the bending of the polymer. The interac-
tion is always finite range, but when γ is small its range tends to increase,
as usual in Kac potential. We will give the exact statement of the main
theorem of this paper in the following section, however our result can be
summarized in the following way: there exists βc >0 (which can be exactly
computed, see below) such that, given ε > 0, there exists a constant c > 0
(depending on ε) for which the following holds. If we choose β such that
|β −βc|� ε and N =ecγ −1

, then the polymer described by Eq. (1.7) is bal-
listic for β >βc, while it is at most diffusive for β <βc.
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In the limit γ → 0, rescaling the space with a factor γ −1, one for-
mally obtains a continuous walk, with a bending interaction on scale 1.
The interaction is such that the repulsion between finite small contiguous
segments is independent on γ (this is the reason of the factor γ 3 in front
of the sum appearing in the Hamiltonian).

One might also characterize the transition by considering polymers of
infinite length, by means of the (unique) DLR infinite volume measure rel-
ative to the interaction in Eq. (1.7). More precisely, from the results of ref.
9, we could prove that, for β >βc and γ →0, there exists a definite length
scale of order eφγ −1

with φ a suitable constant, such that on this length
scale the typical configurations of the polymer are polygons of random
Poisson length. In particular this implies that polymers of finite length N

much larger than eφγ −1
behave diffusively. Conversely, if β <βc, we could

prove that on a scale slightly larger than γ −1, the polymer behaves as a
Brownian path as γ →0.

There are several natural ways to modify this model. One possibil-
ity is to study with the same technique a random walk on the continu-
ous space with steps of length 1 and random (continuous) direction. This
corresponds to the study of one-dimensional planar rotator or classical
Heisenberg models with Kac interaction. Some partial results on these
models can be found in ref. 10, which suggest that the rigidity of the poly-
mer is in this case on scale cγ −2 instead of the much larger ecγ −1

. Another
possible model is to replace the Kac potential with a true long range inter-
action, e.g. decaying as 1/r2. This choice has the advantage to produce a
genuine ballistic–diffusive phase transition, as it could be proved using the
results of ref. 11, but this seems to us less reasonable from a physical point
of view for a polymer because its elastic stiffness is intrinsically local.

2. NOTATION AND RESULTS

We denote by Z
2 the two-dimensional cubic lattice. We will denote by

e1 and e2 the generators of the lattice Z
2, namely e1 = (1,0) and e2 = (0,1).

If x = (x1, x2) and y = (y1, y2) are two elements of Z
2, then x + y = (x1 +

y1, x2 + y2); moreover x · y denotes the usual scalar product x · y = x1y1 +
x2y2 and |x −y| the Euclidean distance |x −y|=√

(x −y) · (x −y). Finally,
if x ∈Z

2 then x2 .=x ·x.
Given a pair {i, j} ⊂ N with i < j , we denote by [i, j ] the set [i, j ] =

{i, i +1, . . . , j −1, j} and define N .= [1,N ]={1,2, . . . ,N} and N0
.= [0,N ]=

{0,1,2, . . . ,N}.
An N -step random walk from the origin is a function ω:N0 →Z

2 : i �→
ωi such that ω0 = 0 and |ωi − ωi−1| = 1 for all i = 1,2, . . . ,N . The value



648 Buttà et al.

ωi ∈Z
2 is the position of the walk ω after i steps. We denote by 
N the set

of all N -step random walks in Z
2 starting at 0. Given a random walk ω∈


N , the function σN :N →{e1;−e1; e2;−e2} : i �→σi
.=ωi −ωi−1 is called the

spin configuration associated to ω. Note that the value σi =ωi −ωi−1 repre-
sents the ith step of the walk ω. We denote by �N the set of all possible
spin configurations associated to some ω. Clearly the correspondence ω↔
σN is by construction 1–1 and onto. Given a set � ⊂ N , we will denote
by σ� a generic spin configuration in �, namely σ� is a function σ�:�→
{e1,−e1, e2,−e2}, and we denote by �� the set of all spin configuration in
�.

We now assign a Kac type self-interaction to each walk ω. A Kac
interaction is defined as follows. Let us take a real, non-negative, even
and differentiable function t �→(t), t ∈R, compactly supported in [−1,1]
and positive in (−1,1). The Kac potential γ , γ ∈ (0,1] induced by  is
defined as:

γ (t)=γ(γ t). (2.1)

Given now an N -step random walk from the origin ω ∈ 
N , the
energy EN(ω) of ω is defined as:

EN(ω)
.=−γ 2

∑
0�i<j�N

γ (j − i) (ωj −ωi)
2. (2.2)

We will assume hereafter γ ∈ {2−n;n ∈ N} (so γ −1 is an integer) and
that also γN is an integer. We remark that this assumption does not hide
a technical difficulty: we want just to avoid the use of heavier notation
involving integer parts.

Moreover, we are interested in the behavior of the random walks
when its length N is much larger than the interaction range γ −1 (in fact
exponentially large in γ −1).

According to the Gibbs prescription, we can now define the probabil-
ity of a given walk ω∈
N at a fixed inverse temperature β >0 as:

pβ,γ (ω)
.= e−βEN(ω)

�N(β, γ )
, (2.3)

where �N(β, γ ) is the partition function, i.e. the normalization factor
given by

�N(β, γ )=
∑

ω∈
N

e−βEN(ω). (2.4)
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We are interested in the mean quadratic end-to-end distance:

RN,γ (β)
.=

∑
ω∈
N

pβ,γ (ω)ω2
N (2.5)

of a random walk in the ensemble described by the probability measure
(2.3). Our main result is the content of the following theorem.

Theorem 2.1. There exist βc > 0 such that the following holds. If
β >βc, let N = eaγ −1

; then there are aβ >0 and Dβ >0 such that:

lim
γ↓0

RN,γ (β)

N2
=Dβ ∀a ∈ (0, aβ). (2.6)

If β <βc there are γβ ∈ (0,1) and Cβ >0 such that:

RN,γ (β)

N
� Cβ

γ
∀N �1, ∀γ ∈ (0, γβ). (2.7)

The proof of Theorem 2.1 will be given at the end of the paper. In the
following sections we will present a formulation of the model in terms of
a one-dimensional spin system and we list a series of results on this spin
model. Note that as far as the diffusive regime is concerned we just give
a bound, stating that the polymer can be at most diffusive on the scale of
the interaction. This guarantees the existence of the two regimes.

3. SPIN SYSTEM REFORMULATION

We write here the model in terms of the “spin variables” σi = ωi −
ωi−1 defined in the previous section. We have:

γ 2
∑

0�i<j�N

γ (j − i) (ωj −ωi)
2 =γ 2

∑
0�i<j�N

γ (j − i)




j∑
k=i+1

σk




2

=γ 2
∑

0�i<j�N

γ (j − i)


2

∑
i<k<l�j

σk ·σl + (j − i −1)




=2γ 2
∑

0�i<j�N

γ (j − i)
∑

i<k<l�j

σk ·σl +CN, (3.1)
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where

CN =Nγ 2
N∑

s=1

γ (s)(s −1)−γ 2
N∑

s=1

γ (s)s(s −1),

so that CN =γNO(1). We then write:

2γ 2
∑

0�i<j�N

γ (j − i)
∑

i<k<l�j

σk ·σl

=2γ 2
∑

1�k<l�N

σk ·σl

∑
{i,j}∈{0,1,2,...,N}

[i,j ]⊇[k−1,l]

γ (j − i)

=2γ 2
∑

1�k<l�N

σk ·σl

∑
s�1

∑
{i,j}∈{0,1,2,...,N}

[i,j ]⊇[k−1,l], j−i=s+l−k

γ (j − i)

=
∑

1�k<l�N

Vγ (k, l) σk ·σl,

where

Vγ (k, l)
.=2γ 2

∑
s�1

γ (s + l −k)Fk,l(s) (3.2)

and

Fk,l(s)=




s if l + s �N and s <k,
N − l if l + s >N and s <k,
k if l + s �N and s �k,
min{k,N − l} if l + s >N and s �k.

(3.3)

We have thus written EN(ω) as:

EN(ω)=E
(0)
N (σN )+CN, (3.4)

where

E
(0)
N (σN )=−

∑
1�k<l�N

Vγ (k, l) σk ·σl. (3.5)
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Formulas (3.4) and (3.5) above show that the energy EN(ω) describ-
ing the self interaction of a two-dimensional random walk ω∈
N can be
reinterpreted as the energy E

(0)
N (σN ) of a one-dimensional spin system con-

fined in the “volume” N with free boundary conditions. Namely, E
(0)
γ (σ )

represents the energy of the spin configuration σ ∈ �N uniquely associ-
ated to ω. The spins in this one-dimensional system are two-dimensional
vectors assuming the four possible values ±e1,±e2 and they interact via
an Ising ferromagnetic interaction with pair potential Vγ (k, l) defined in
Eq. (3.2). Finally, the partition function (2.4) can now be written, as:

�N(β, γ )= eβCN �
(0)
N (β, γ ),

where

�
(0)
N (β, γ )=

∑
σN ∈�N

e−βE
(0)
N (σN ) (3.6)

is the partition function of the one-dimensional spin system above.
By the hypothesis on γ , it is immediate to check that Vγ (k, l) has

finite range equal to γ −1, namely:

Vγ (k, l)=0 whenever l −k �γ −1. (3.7)

We would also like Vγ (k, l) to be translational invariant, namely we
would like Vγ (k, l) to depend only on the difference l −k. This in general
is not true because the function Fk,l(s) defined in Eq. (3.3) is not trans-
lational invariant. Actually it is easy to see that such loss of translational
invariance occurs only when k and l vary in a very small set near the bor-
ders of N . To make things more precise let us define, for t ∈R,

Jγ (t)=2γ 2
∑
s�1

s γ (s +|t |) (3.8)

and consider the subsets �1 and �N of N given by �1 ={k ∈N :k �γ −1}
and �N ={l ∈N :N − γ −1 <l �N}. Then, due to the finite range property
(3.7), one can easily check that:

Vγ (k, l)=Jγ (l −k)+ εγ (k, l)
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with

εγ (k, l)=
{

0 if {k, l} ⊂ (�1 ∪�N),
2γ 2 ∑∞

s=1[Fkl(s)− s)]γ (s + l −k) if {k, l}⊂ (�1 ∪�N).

In other words, the pair potential Vγ (k, l) is indeed a function Jγ (l −k) of
the difference l − k if k, l are not both contained in one of the two extre-
mal sets �1 and �N . When vice versa k and l both belong either to one
of the two extremal sets, then Vγ (k, l) is given by Jγ (l − k) plus the non-
translational invariant “boundary” correction εγ (k, l).

The function Jγ (t) defined in Eq. (3.8) behaves as a Kac potential.
Indeed:

Jγ (t)=γ J (γ )(γ t) (3.9)

where

J (γ )(t)=γ

∞∑
s=1

(γ s)(γ s +|t |)

is such that

lim
γ→0

J (γ )(t)
.=J (0)(t)=

∫ ∞

0
dx x (x +|t |). (3.10)

It is now clear the reason of the presence of the scaling factor γ 2 in the
Hamiltonian (2.2): with this choice the function Jγ (t) has the correct scal-
ing (3.9) (the function J (γ )(t) being almost “scale invariant”).

By definition (3.8) and the properties of , it follows that J (t) is an
even, non-negative, differentiable function, compactly supported in [−1,1]
and positive in (−1,1).

Let now N b .=N\(�1 ∪�N), then any configuration σN on N can be
seen as the union of a configuration σ�1 on �1, σ�N

on �N , and σN b on
N b. Therefore, using Eq. (3.7), one can easily check that

E
(0)
N (σN )=E

(0)
�1

(σ�1)+E
(0)
�N

(σ�N
)+H

σ�1∪�N

N b (σN b),

where σ�1∪�N
is the spin configuration on �1 ∪�N which agrees with σ�1

on �1 and with σ�N
on �N , and H

σ�1∪�N

N b (σN b) is a spin Hamiltonian
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defined in the volume N b with boundary condition σ�1∪�N
through the

translational invariant Kac potential Jγ :

H
σ�1∪�N

N b (σN b)=−
∑
{i<j}

i∈�1∪N b, j∈N b∪�N

Jγ (j − i) σi ·σj . (3.11)

The partition function (3.6) can be rewritten as

�
(0)
N (β, γ )=

∑
σ�1∈��1
σ�N

∈��N

e
−βE

(0)
�1

(σ�1 )+E
(0)
�N

(σ�N
)
Z

σ�1∪�N

N b (β, γ ), (3.12)

where

Z
σ�1∪�N

N b (β, γ )=
∑

σN b∈�N b

e
−βH

σ�1∪�N

N b (σN b )
.

Consider now the finite volume Gibbs measure on �N b ,

ν
σ�1∪�N

β,γ (σN b)= e
−βH

σ�1∪�N

N b (σN b )

Z
σ�1∪�N

N b (β, γ )
. (3.13)

We now show that under a suitable change of variables, the measure (3.13)
is mapped into the product of two independent Ising models. We introduce
the two orthogonal vectors in R

2,

f1 = e1 + e2

2
, f2 = e1 − e2

2
,

so that e1 =f1 +f2 and e2 =f1 −f2. Then, to each spin configuration σ ∈
�N it corresponds a unique pair (τ (1), τ (2)), where

τ (r) = (τ
(r)

1 , . . . , τ
(r)
N )∈MN

.={−1,1}N , r =1,2,

such that σi =τ
(1)
i f1 +τ

(2)
i f2 for all i ∈N . Under the map σ →τ the mea-

sure (3.13) is mapped into a product measure. Indeed:

H
σ�1∪�N

N b (σN b)=H
τ

(1)
�1∪�N

N b (τ
(1)

N b)+H
τ

(2)
�1∪�N

N b (τ
(2)

N b),
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where, for r =1,2,

H
τ

(r)
�1∪�N

N b (τ
(r)

N b)=−1
2

∑
{i<j}

i∈�1∪N b, j∈N b∪�N

Jγ (j − i) τ
(r)
i τ

(r)
j . (3.14)

Then, for any real function σ →F(σ),

ν
σ�1∪�N

β,γ (F )=µ
τ

(1)
�1∪�N

β,γ ⊗µ
τ

(2)
�1∪�N

β,γ (F̃ ), (3.15)

where F̃ (τ )
.=F(τ (1)f1 + τ (2)f2) and

µ
τ

(r)
�1∪�N

β,γ (τN b)= e
−βH

τ
(r)
�1∪�N

N b (τ
(r)

N b )

Z
τ

(r)
�1∪�N

N b (β, γ )

, r =1,2. (3.16)

We have thus decomposed the system as the superposition of two
independent one-dimensional Ising model with Kac interaction, whose
typical behavior is studied in ref. 9. Theorem 2.1 is now an easy conse-
quence of those results.

4. PROOF OF THEOREM 2.1

We shall prove Theorem 2.1 with

βc =2
[∫

dt J (0)(t)

]−1

, (4.1)

i.e. the inverse mean field critical temperature for the one-dimensional
Ising spin system with interaction Jγ /2 (recall definitions (3.10) and
(3.14)).

Let us denote by µβ,γ the (infinite volume) Gibbs measure on
{−1,1}Z with potential Jγ /2 at inverse temperature β. Clearly, if the event
A is generated by the spin variables {τi; i ∈N b} then:

µβ,γ (A|τ (r)
�1∪�N

)=µ
τ

(r)
�1∪�N

β,γ (A), (4.2)

where µβ,γ (·|τ (r)
�1∪�N

) denotes the conditional infinite volume measure.
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By Theorem 5.1 in ref. 9 there exist two positive constants ā and k

such that, if A is any event generated by {τi; i >γ −k} and symmetric under
spin flip, then:

|µβ,γ (A|τC)−µβ,γ (A|τ ′
C)|� e−āγ −1

, (4.3)

for any τC, τ ′
C ∈ {−1,1}C and any interval C = [−L,−1] in Z<0 with L >

γ −1.
We shall prove Eq. (2.6) with aβ � ā/2. Therefore we fix β > βc, a ∈

(0, ā/2), and N = eaγ −1
. For k as above and γ small enough, let N b

k be
the (non-empty) set [γ −(k+1),N −γ −(k+1)] and define

ω2
N b

k

= (ωN−γ −(k+1) −ωγ −(k+1) )
2 =

∑

i,j∈N b
k

(τ
(1)
i τ

(1)
j + τ

(2)
i τ

(2)
j ). (4.4)

Since the function τ
(r)
i τ

(r)
j is invariant under spin flip and it is generated

by {τ (r)
i ; i ∈N b}, by Eqs. (3.15), (4.2), (4.3), and the total probability the-

orem,

∣∣∣∣∣∣∣∣
ν

σ�1∪�N

β,γ

(
ω2

N b
k

)
−2 µβ,γ




∑

i∈N b
k

τi




2
∣∣∣∣∣∣∣∣
�2N2e−āγ −1 �2. (4.5)

Then, recalling Eqs. (2.5), (2.3), (2.4), (3.6), and (3.12), by (4.5) we get

lim
γ↓0

RN,γ (β)

N2
= lim

γ↓0

1

|N b
k |2

∑
ω∈
N

pβ,γ (ω)ω2
N b

k

= lim
γ↓0

2

|N b
k |2 µβ,γ




∑

i∈N b
k

τi




2

. (4.6)

We now exploit the results of Theorems 2.3 and 2.8 in ref. 9. Given
δ ∈{2−n;n∈N}, we denote by I�, �∈Z, the subset of Z defined as:

I� ={i ∈Z:δγ −1(�−1)< i � δγ −1�}. (4.7)
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In particular N b
k is partitioned into L=δ−1γ |N b

k | intervals I1, . . . , IL, each
one containing exactly δγ −1 sites of N b

k . To each spin configuration τ ∈
{−1,1}Z we associate the mean magnetization in I�:

m� =m�(τ)
.=γ δ−1

∑
i∈I�

τi . (4.8)

Now let mβ be the positive solution of the mean field equation:

mβ = tanh(ββ−1
c mβ).

By Theorems 2.3 and 2.8 in ref. 9, for any sufficiently small c, δ > 0 and
ζ ∈ (0,mβ),

lim
γ↓0

µβ,γ

(
{τ : |m� −mβ |<ζ ∀ |�|� δ−1γ ecγ −1}

)
= 1

2
.

and the same holds with mβ replaced by −mβ . Hence, if a is small
enough,

µβ,γ




∑

i∈N b
k

τi




2

= δ2

γ 2
µβ,γ




L∑
�,�′=1

m�m�′


=|N b

k |2
[
m2

β + ε(ζ, γ )
]
,

with

lim sup
ζ↓0

lim sup
γ↓0

ε(ζ, γ )=0.

Then, choosing aβ ∈ (0, ā/2) sufficiently small and recalling Eq. (4.6), we
get Eq. (2.6) with Dβ =2m2

β .
Concerning the second part of Theorem 2.1, we first note that the

estimate (2.7) is trivial if γN is uniformly bounded, whence we assume
N �10γ −1 in the sequel. By definition (4.1), if β <βc there exist γβ ∈ (0,1)

and r ∈ (0,1) such that:

β

2

∑
j =i

Jγ (i − j)� r ∀γ ∈ (0, γβ). (4.9)

This is the well known Dobrushin’s uniqueness condition for the interac-
tion Jγ /2 which implies in particular the following facts, see ref. 12. If �
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is any interval in Z and i ∈�, for any boundary conditions τ�c , τ ′
�c there

exists a coupling Qτ�c ,τ ′
�c (τ�, τ ′

�) of the two probabilities µ
τ�c

β,γ and µ
τ ′
�c

β,γ

such that:

D
τ�c ,τ ′

�c

�,i

.=
∑

τ�,τ ′
�

Qτ�c ,τ ′
�c (τ�, τ ′

�) |τi − τ ′
i |

� 2
∑
n�1

∑
j /∈�

∑
ii ,... ,in−1

ri,i1 · · · rin−1,j ,

where rt,s
.=βJγ (t − s)/2. Since rt,s =0 for |t − s|�γ −1, denoting by n0 the

integer part of γ dist(i,�c), by Eq. (4.9) we have, for suitable C1,C2 >0,

D
τ�c ,τ ′

�c

�,i �2
∑
n�n0

rn �C1e
−C2γ dist(i,�c) ∀γ ∈ (0, γβ). (4.10)

Now, since µβ,γ (τi)=0,

|µτ�c

β,γ (τi)|= |µτ�c

β,γ (τi)−µβ,γ (τi)|�
∫

dµβ,γ (τ ′
�c)D

τ�c ,τ ′
�c

�,i . (4.11)

Moreover, if i <j and i, j ∈�, setting I = [i, j −1]⊂� we also have:

|µτ�c

β,γ (τiτj )−µ
τ�c

β,γ (τi)µ
τ�c

β,γ (τj )|

=
∣∣∣∣
∫

dµ
τ�c

β,γ (τ�\I )
∫

dµ
τ�c

β,γ (τ ′
�\I )

∑

τI ,τ ′
I

QτIc ,τ ′
Ic (τI , τ

′
I ) (τi − τ ′

i ) τj

∣∣∣∣

�
∫

dµ
τ�c

β,γ (τ�\I )
∫

dµ
τ�c

β,γ (τ ′
�\I )D

τIc ,τ ′
Ic

I,i . (4.12)

From Eqs. (4.10), (4.11), and (4.12) we conclude that there are constants
C3,C4 >0 such that, for any γ ∈ (0, γβ) and any boundary condition τ�c ,

|µτ�c

β,γ (τiτj )|�C3

(
e−C4γ |i−j | + e−C4γ [dist(i,�c)+dist(j,�c)]

)
. (4.13)

Let ω2
N b be defined analogously to ω2

N b
k

in Eq. (4.4). By Eqs. (3.15) and

(4.13) we have, for some constant C5 >0,

ν
σ�1∪�N

β,γ

(
ω2

N b

)
�2

∑

i,j∈N b

sup
τ�1∪�N

µ
τ�1∪�N

β,γ (τiτj )�N
C5

γ
. (4.14)

Then, recalling Eqs. (2.5), (2.3), (2.4), (3.6), and (3.12), the bound (2.7)
easily follows from Eq. (4.14).
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